Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Estimation of multi-junction solar cell parameters

Identifieur interne : 000D31 ( Main/Repository ); précédent : 000D30; suivant : 000D32

Estimation of multi-junction solar cell parameters

Auteurs : RBID : Pascal:13-0193170

Descripteurs français

English descriptors

Abstract

The paper deals with the parameter estimation of InGaP/GaAs/Ge multi-junction solar cell and is based on minimizing the difference between the measured I-V and the theoretical I-V characteristics-the objective function. The parameter estimation was first performed on a multi-junction solar cell represented by a single-diode model containing eight parameters: five conventional parameters and three additional parameters for the negative diode breakdown voltage. An extended model is also presented for detailed analysis of the multi-junction cell containing three subcells connected in series. In this model, each subcell is represented by eight parameters, and therefore a total of 24 parameters describe the cell. The parameter estimation procedure requires derivatives of the first and the second order of an objective function, filtering of noisy measurements, iteration algorithm, guessing of initial parameters, zero finding, and stopping criteria. The paper presents a mathematical method and a procedure for extracting solar cell parameters based on I-V measured data. The parameters' values may be used for analysis of the current mismatch of the subcells, the power loss, the output power of the multi-junction cell for different environmental conditions, and to some extent, for cell fabrication.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0193170

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Estimation of multi-junction solar cell parameters</title>
<author>
<name sortKey="Or, Asaf Ben" uniqKey="Or A">Asaf Ben Or</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Electrical Engineering, Tel Aviv University</s1>
<s2>Tel Aviv 699778</s2>
<s3>ISR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Israël</country>
<wicri:noRegion>Tel Aviv 699778</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Appelbaum, Joseph" uniqKey="Appelbaum J">Joseph Appelbaum</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Electrical Engineering, Tel Aviv University</s1>
<s2>Tel Aviv 699778</s2>
<s3>ISR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Israël</country>
<wicri:noRegion>Tel Aviv 699778</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0193170</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0193170 INIST</idno>
<idno type="RBID">Pascal:13-0193170</idno>
<idno type="wicri:Area/Main/Corpus">000D19</idno>
<idno type="wicri:Area/Main/Repository">000D31</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1062-7995</idno>
<title level="j" type="abbreviated">Prog. photovolt.</title>
<title level="j" type="main">Progress in photovoltaics</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algorithm</term>
<term>Diode</term>
<term>Disruptive voltage</term>
<term>Equivalent circuit</term>
<term>Gallium phosphide</term>
<term>Germanium</term>
<term>Indium phosphide</term>
<term>Iteration</term>
<term>Iterative method</term>
<term>Mathematical method</term>
<term>Mismatching</term>
<term>Multijunction solar cells</term>
<term>Objective function</term>
<term>Output power</term>
<term>Parameter estimation</term>
<term>Parameter extraction</term>
<term>Power losses</term>
<term>Second order</term>
<term>Solar cell</term>
<term>Ternary compound</term>
<term>Voltage current curve</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Cellule solaire multijonction</term>
<term>Estimation paramètre</term>
<term>Caractéristique courant tension</term>
<term>Fonction objectif</term>
<term>Diode</term>
<term>Tension disruptive</term>
<term>Ordre 2</term>
<term>Méthode itérative</term>
<term>Itération</term>
<term>Algorithme</term>
<term>Méthode mathématique</term>
<term>Extraction paramètre</term>
<term>Cellule solaire</term>
<term>Désadaptation</term>
<term>Perte puissance</term>
<term>Puissance sortie</term>
<term>Schéma équivalent</term>
<term>Phosphure de gallium</term>
<term>Phosphure d'indium</term>
<term>Composé ternaire</term>
<term>Germanium</term>
<term>InGaP</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The paper deals with the parameter estimation of InGaP/GaAs/Ge multi-junction solar cell and is based on minimizing the difference between the measured I-V and the theoretical I-V characteristics-the objective function. The parameter estimation was first performed on a multi-junction solar cell represented by a single-diode model containing eight parameters: five conventional parameters and three additional parameters for the negative diode breakdown voltage. An extended model is also presented for detailed analysis of the multi-junction cell containing three subcells connected in series. In this model, each subcell is represented by eight parameters, and therefore a total of 24 parameters describe the cell. The parameter estimation procedure requires derivatives of the first and the second order of an objective function, filtering of noisy measurements, iteration algorithm, guessing of initial parameters, zero finding, and stopping criteria. The paper presents a mathematical method and a procedure for extracting solar cell parameters based on I-V measured data. The parameters' values may be used for analysis of the current mismatch of the subcells, the power loss, the output power of the multi-junction cell for different environmental conditions, and to some extent, for cell fabrication.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1062-7995</s0>
</fA01>
<fA03 i2="1">
<s0>Prog. photovolt.</s0>
</fA03>
<fA05>
<s2>21</s2>
</fA05>
<fA06>
<s2>4</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Estimation of multi-junction solar cell parameters</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>OR (Asaf Ben)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>APPELBAUM (Joseph)</s1>
</fA11>
<fA14 i1="01">
<s1>School of Electrical Engineering, Tel Aviv University</s1>
<s2>Tel Aviv 699778</s2>
<s3>ISR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>713-723</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>26755</s2>
<s5>354000174777700330</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>15 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0193170</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Progress in photovoltaics</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The paper deals with the parameter estimation of InGaP/GaAs/Ge multi-junction solar cell and is based on minimizing the difference between the measured I-V and the theoretical I-V characteristics-the objective function. The parameter estimation was first performed on a multi-junction solar cell represented by a single-diode model containing eight parameters: five conventional parameters and three additional parameters for the negative diode breakdown voltage. An extended model is also presented for detailed analysis of the multi-junction cell containing three subcells connected in series. In this model, each subcell is represented by eight parameters, and therefore a total of 24 parameters describe the cell. The parameter estimation procedure requires derivatives of the first and the second order of an objective function, filtering of noisy measurements, iteration algorithm, guessing of initial parameters, zero finding, and stopping criteria. The paper presents a mathematical method and a procedure for extracting solar cell parameters based on I-V measured data. The parameters' values may be used for analysis of the current mismatch of the subcells, the power loss, the output power of the multi-junction cell for different environmental conditions, and to some extent, for cell fabrication.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Cellule solaire multijonction</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Multijunction solar cells</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Estimation paramètre</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Parameter estimation</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Estimación parámetro</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Caractéristique courant tension</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Voltage current curve</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Característica corriente tensión</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Fonction objectif</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Objective function</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Función objetivo</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Diode</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Diode</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Diodo</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Tension disruptive</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Disruptive voltage</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Voltaje disruptivo</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Ordre 2</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Second order</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Orden 2</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Méthode itérative</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Iterative method</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Método iterativo</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Itération</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Iteration</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Iteracción</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Algorithme</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Algorithm</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Algoritmo</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Méthode mathématique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Mathematical method</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Método matemático</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Extraction paramètre</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Parameter extraction</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Extracción parámetro</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Cellule solaire</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Solar cell</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Célula solar</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Désadaptation</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Mismatching</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Desadaptación</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Perte puissance</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Power losses</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Puissance sortie</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Output power</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Potencia salida</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Schéma équivalent</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Equivalent circuit</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Esquema equivalente</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Phosphure de gallium</s0>
<s5>22</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Gallium phosphide</s0>
<s5>22</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Galio fosfuro</s0>
<s5>22</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Phosphure d'indium</s0>
<s5>23</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Indium phosphide</s0>
<s5>23</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Indio fosfuro</s0>
<s5>23</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Composé ternaire</s0>
<s5>24</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Ternary compound</s0>
<s5>24</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Compuesto ternario</s0>
<s5>24</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Germanium</s0>
<s2>NC</s2>
<s5>25</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Germanium</s0>
<s2>NC</s2>
<s5>25</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Germanio</s0>
<s2>NC</s2>
<s5>25</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>InGaP</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fN21>
<s1>175</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D31 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000D31 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0193170
   |texte=   Estimation of multi-junction solar cell parameters
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024